Ultra-Fast Precision TTL Comparator

Abstract

General Description The Maxim MXL1016 (10ns, typ) high-speed, comple-mentary-output comparator is designed specifically to interface directly to TTL logic while operating from either a dual $\pm 5 \mathrm{~V}$ supply or a single +5 V supply. The MXL1016 remains stable with the outputs in the active region, which greatly reduces output instabillity common with slow-moving input signals. In addition, an output latch (LE) is provided. For lower-power, higher-performance comparators, see the MAX912/MAX913 dual/single comparators data sheet. The MAX913 is an improved plug-in replacement for the MXL1016 and the MAX912 is the dual equivalent to the MAX913.

Applications
High-Speed A/D Converters
Zero-Crossing Detectors
Current Sense for Switching Regulators
High-Speed Sampling Circuits
High-Speed Triggers
Line Receivers
Extended Range V/F Converters
Fast Pulse Height/Width Discriminators

Features

- Ultra Fast (10ns, typ)
- Single +5 V or Dual $\pm 5 \mathrm{~V}$ Supply Operation
- Complementary TTL Outputs
- Low Offset Voltage: 1mV
- No Minimum Input Slew-Rate Requirement
- No Power-Supply Current Spiking
- Output Latch

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MXL1016CN8	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MXL 1016 CS 8	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO

Pin Configuration

TOP VIEW

Pin Description

PIN	NAME	FUNCTION
1	V+	Positive Power Supply +5V
2	IN +	Noninverting Input
3	IN-	Inverting Input
4	V-	Negative Power Supply, -5V for dual supply or GND for single supply
5	LE	Latch Enable. QOUT and $\overline{\text { QOUT are }}$ latched when LE is high
6	GND	Ground
7	QOUT	TTL Output
8	$\overline{\text { QOUT }}$	Complementary TTL Output

Ultra-Fast Precision TTL Comparator

\author{

ABSOLUTE MAXIMUM RATINGS
 | Positive Supply Voltage... 7 F | |
| :---: | :---: |
| Negative Supply Voltage | 7V |
| | |
| Differential Input Voltage | |
| MXL1016.. | $\pm 5 \mathrm{~V}$ |
| Input Voltage (either input) | |
| MXL1016 | Equal to Supplies |
| Latch Pin Volt | Equal to Supplies |

Output Current (continuous).. Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
8-Pin Plastic DIP (derate $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) ... 727 mW	
8-Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).............. 471 mW	
Operating Temperature Ranges:	
MXL1016	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ead Temperatu	$+300^{\circ}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}(\mathrm{Q})=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{LE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 2)	Vos	$R \mathrm{~S} \leq 100 \Omega$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.0	± 3	mV
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			3.5	
Input Offset-Voltage Drift	$\Delta \mathrm{V}_{\text {OS } / \Delta \mathrm{T}}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			4		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current (Note 2)	Ios	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			0.3	1	$\mu \mathrm{A}$
		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$				1.3	
Input Bias Current (Note 3)	IB	TA $=+25^{\circ} \mathrm{C}$$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			5	10	$\mu \mathrm{A}$
						13	
Input Voltage Range	VCM	Dual +5 V and -5 V supply		-3.75		+3.50	V
		Single 5V supply		+1.25		+3.50	
Common-Mode Rejection Ratio	CMRR	$-3.75 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 3.5 \mathrm{~V}$		80	96		dB
Power-Supply Rejection Ratio	PSRR	Positive supply: $4.6 \mathrm{~V} \leq \mathrm{V}+\leq 5.4 \mathrm{~V}$		60	75		dB
		Negative supply: $-2 \mathrm{~V} \geq \mathrm{V}-\geq-7 \mathrm{~V}$		80	100		
Small-Signal Voltage Gain	Av	$1 \mathrm{~V} \leq \mathrm{VOUT} \leq 2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1400	3000		V/V
Output High Voltage	VOH	$\mathrm{V}+\geq 4.6 \mathrm{~V}$	IOUT $=1 \mathrm{~mA}$	2.7	3.4		V
			IOUT $=10 \mathrm{~mA}$	2.4	3.0		
Output Low Voltage	Vol	$\mathrm{ISINK}=4 \mathrm{~mA}$			0.3	0.5	V
		$\mathrm{ISINK}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			0.4		
Positive Supply Current	I+	(Note 4)			25	35	mA
Negative Supply Current	I-	(Note 4)			3	5	mA

Ultra-Fast Precision TTL Comparator

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}(\mathrm{Q})=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{LE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Latch Pin High Input Voltage	V_{IH}			2.0			V
Latch Pin Low Input Voltage	$\mathrm{V}_{\text {IL }}$					0.8	V
Latch Pin Current	IIL	$V_{L E}=0 \mathrm{~V}$				-500	$\mu \mathrm{A}$
Propagation Delay (Note 5)	tPD	$\Delta V_{I N}=100 \mathrm{mV}$,	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		10	14	ns
		$\mathrm{OD}=5 \mathrm{mV}$				16	
		$\begin{aligned} & \Delta V_{I N}=100 \mathrm{mV} \\ & O D=20 \mathrm{mV} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		9	12	
						15	
Differential Propagation Delay (Note 5)	$\Delta \mathrm{tPD}$	$\Delta \mathrm{V}$ IN $=100 \mathrm{mV}, \mathrm{OD}=5 \mathrm{mV}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				4	ns
Latch Setup Time	tsu	(Note 6)			2		ns
Latch Hold Time	th	(Note 6)			2		ns

Note 1: All specifications are 100% tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Specification limits over temperature ($\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$) are guaranteed by design.
Note 2: Input offset voltage is defined as the average of the two input offset voltages, measured by forcing first one output, then the other to 1.4 V . Input offset current is defined in the same way.
Note 3: Input bias current $\left(I_{\mathrm{B}}\right)$ is defined as the average of the two input currents.
Note 4: Supply currents are measured with $\mathrm{V}_{\text {OUT }}(\mathrm{Q})$ driven to both V_{OH} and V_{OL} (not 1.4V).
Note 5: tPD and Δ tpD cannot be measured in automatic handling equipment with low values of overdrive. Characterization and correlation tests have shown that tpD and Δ tpD limits can be guaranteed by design. Electrical Characteristic DC tests are performed to guarantee that all internal bias conditions are correct. For low overdrive conditions, Vos is added to overdrive.
Note 6: Input latch setup time, tSU, is the interval in which the input signal must be stable prior to asserting the latch signal. The hold time, th , is the interval after the latch is asserted in which the input signal must be stable.

Ultra-Fast Precision TTL Comparator

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Ultra-Fast Precision TTL Comparator

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

TOP VIEW

SIDE VIEW

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
A	0.053	0.069	1.35	1.75	
A1	0.004	0.010	0.10	0.25	
B	0.014	0.019	0.35	0.49	
C	0.007	0.010	0.19		
e	0.050		BSC	1.27	
BSC	0.150	0.157	3.80	4.00	
H	0.228	0.244	5.80	6.20	
L	0.016	0.050	0.40	1.27	

VARIATIONS:

	INCHES		MILLIMETERS				
DIM	MIN	MAX	MIN	MAX	N	MS012	
D	0.189	0.197	4.80	5.00	8	AA	
D	0.337	0.344	8.55	8.75	14	AB	
D	0.386	0.394	9.80	10.00	16	AC	

NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15 mm (.006").
3. LEADS TO BE COPLANAR WITHIN 0.10 mm (.004").
4. CONTROLLING DIMENSION: MILLIMETERS.
5. MEETS JEDEC MSO12.
6. $N=$ NUMBER OF PINS.

TTILE:			
PACKAGE OUTLINE, .150" SOIC			
PRoval	DOCUMENT CONTROL NO. $21-0041$	B	1/1

